metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.2D12, (C2×D12)⋊3C4, C23⋊C4⋊2S3, (C2×D4).4D6, (C4×Dic3)⋊2C4, C3⋊1(C42⋊C4), C12⋊3D4.1C2, (C6×D4).4C22, (C22×C6).11D4, C6.10(C23⋊C4), C23.7D6⋊1C2, C23.4(C3⋊D4), C22.11(D6⋊C4), C2.11(C23.6D6), (C2×C4).2(C4×S3), (C3×C23⋊C4)⋊2C2, (C2×C12).2(C2×C4), (C2×C6).4(C22⋊C4), SmallGroup(192,33)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×D4 — C23⋊C4 |
Generators and relations for C23.2D12
G = < a,b,c,d,e | a2=b2=c2=d12=1, e2=a, dad-1=ab=ba, ac=ca, ae=ea, dbd-1=ebe-1=bc=cb, cd=dc, ce=ec, ede-1=ad-1 >
Subgroups: 384 in 86 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×D4, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C23⋊C4, C23⋊C4, C4⋊1D4, C4×Dic3, C6.D4, C3×C22⋊C4, C2×D12, C2×C3⋊D4, C6×D4, C42⋊C4, C23.7D6, C3×C23⋊C4, C12⋊3D4, C23.2D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, C4×S3, D12, C3⋊D4, C23⋊C4, D6⋊C4, C42⋊C4, C23.6D6, C23.2D12
Character table of C23.2D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 2 | 4 | 4 | 24 | 2 | 4 | 8 | 8 | 12 | 12 | 24 | 24 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | -i | 1 | 1 | -i | i | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | i | 1 | 1 | i | -i | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -1 | -1 | -i | i | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -1 | -1 | i | -i | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | √3 | -√3 | √3 | -√3 | 1 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | -√3 | √3 | -√3 | √3 | 1 | orthogonal lifted from D12 |
ρ15 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | i | -i | -i | i | -1 | complex lifted from C4×S3 |
ρ16 | 2 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | -i | i | i | -i | -1 | complex lifted from C4×S3 |
ρ17 | 2 | 2 | 2 | -2 | 2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | √-3 | √-3 | -√-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | -2 | 2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | -√-3 | -√-3 | √-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ19 | 4 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C42⋊C4 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C42⋊C4 |
ρ22 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2√-3 | -2√-3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.6D6 |
ρ23 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2√-3 | 2√-3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.6D6 |
ρ24 | 8 | -8 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(2 19)(3 20)(6 23)(7 24)(10 15)(11 16)
(1 18)(3 20)(5 22)(7 24)(9 14)(11 16)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 13)(9 14)(10 15)(11 16)(12 17)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 12)(2 16 19 11)(3 10 20 15)(4 9)(5 8)(6 24 23 7)(13 22)(14 21)(17 18)
G:=sub<Sym(24)| (2,19)(3,20)(6,23)(7,24)(10,15)(11,16), (1,18)(3,20)(5,22)(7,24)(9,14)(11,16), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,13)(9,14)(10,15)(11,16)(12,17), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,12)(2,16,19,11)(3,10,20,15)(4,9)(5,8)(6,24,23,7)(13,22)(14,21)(17,18)>;
G:=Group( (2,19)(3,20)(6,23)(7,24)(10,15)(11,16), (1,18)(3,20)(5,22)(7,24)(9,14)(11,16), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,13)(9,14)(10,15)(11,16)(12,17), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,12)(2,16,19,11)(3,10,20,15)(4,9)(5,8)(6,24,23,7)(13,22)(14,21)(17,18) );
G=PermutationGroup([[(2,19),(3,20),(6,23),(7,24),(10,15),(11,16)], [(1,18),(3,20),(5,22),(7,24),(9,14),(11,16)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,13),(9,14),(10,15),(11,16),(12,17)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,12),(2,16,19,11),(3,10,20,15),(4,9),(5,8),(6,24,23,7),(13,22),(14,21),(17,18)]])
G:=TransitiveGroup(24,344);
(1 17)(2 24)(3 13)(4 20)(5 21)(6 16)(7 15)(8 22)(9 23)(10 18)(11 19)(12 14)
(1 9)(3 11)(5 7)(13 19)(15 21)(17 23)
(1 9)(2 10)(3 11)(4 12)(5 7)(6 8)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 6 17 16)(2 21 24 5)(3 4 13 20)(7 10 15 18)(8 23 22 9)(11 12 19 14)
G:=sub<Sym(24)| (1,17)(2,24)(3,13)(4,20)(5,21)(6,16)(7,15)(8,22)(9,23)(10,18)(11,19)(12,14), (1,9)(3,11)(5,7)(13,19)(15,21)(17,23), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,6,17,16)(2,21,24,5)(3,4,13,20)(7,10,15,18)(8,23,22,9)(11,12,19,14)>;
G:=Group( (1,17)(2,24)(3,13)(4,20)(5,21)(6,16)(7,15)(8,22)(9,23)(10,18)(11,19)(12,14), (1,9)(3,11)(5,7)(13,19)(15,21)(17,23), (1,9)(2,10)(3,11)(4,12)(5,7)(6,8)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,6,17,16)(2,21,24,5)(3,4,13,20)(7,10,15,18)(8,23,22,9)(11,12,19,14) );
G=PermutationGroup([[(1,17),(2,24),(3,13),(4,20),(5,21),(6,16),(7,15),(8,22),(9,23),(10,18),(11,19),(12,14)], [(1,9),(3,11),(5,7),(13,19),(15,21),(17,23)], [(1,9),(2,10),(3,11),(4,12),(5,7),(6,8),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,6,17,16),(2,21,24,5),(3,4,13,20),(7,10,15,18),(8,23,22,9),(11,12,19,14)]])
G:=TransitiveGroup(24,346);
Matrix representation of C23.2D12 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | -1 | 0 | 0 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
1 | -1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,1,0,0] >;
C23.2D12 in GAP, Magma, Sage, TeX
C_2^3._2D_{12}
% in TeX
G:=Group("C2^3.2D12");
// GroupNames label
G:=SmallGroup(192,33);
// by ID
G=gap.SmallGroup(192,33);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,422,1123,794,297,136,851,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^12=1,e^2=a,d*a*d^-1=a*b=b*a,a*c=c*a,a*e=e*a,d*b*d^-1=e*b*e^-1=b*c=c*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*d^-1>;
// generators/relations
Export